First-Class Distributed Session Types

Simon Fowler
<imon.fowler @e d.ac.uk EPPSRC Cen‘ire for;ociorai'll'ralln.mg in
Joint work with Sam Lindley and). Garrett Morris ervasive raraiieism

. Breaking the Barrier: From Multithreaded to Distributed
Session Types: Types for Protocols

Server | |
Data types classify data. 1 Concurrency on server and clients. Limitation: no
Session types describe protocols as types. —~ communication across boundaries!

Distributed Session Links: breaks barriers.

Send Domain. then FromAddress | ‘ ' Websockets allow full-duplex communication
g} Bl petween clients and server.
SMTPClient = D1 Server

EHLO: 1Domain. !FromAddress. | ToAddress . : Agto.mat.lc message serialisation anc! deserialisation
: = Distribution-aware concurrency runtimes
IMessage.SMTPClient;

| o o o » Distributed algorithm for channel mobility
QUIT: end | Client2 | [Client3
} | | |

Finish the protocol

Choose either EHLO or QUIT

“But what happens if a user just closes the browser?”:

Links: Web Programming without Tiers , , ,
Affine Sessions with Exceptional Syntax

Links: a functional web language unifying client, server

and database code. sig recvAndAdd :

(?Int.end, ?Int.end) ~> Int Affine sessions: a user can close their browser!
fun recvAndAdd(s, t){

request try { Exception construct with explicit success continuation [1].
) i i L
et (x, s) = recelve s in Oy communication error:

Browser: Server:

HTML / Javascript / Ruby / Python / Sgtt/a;Ca)zZ:ry let (y, t) receive t 1in |
XML response | Java/ASP result (X, y) = Inspect free variables, cancel affected channels

‘ ¢ } is+(§, y) in { » Proceed to “"otherwise"” block if exception handled

} otherwise { = Halt thread otherwise

-1 . .
Links extended with session types [2], making use of a linear)) Adapts Affine Sessions [3] to asynchronous concurrent

type system. } A-calculus GV.

Formalism

Example Reduction Rules
» Session abstractions in the web setting Receiving a Message

This work: Distributed Session Links.

Successful receive:

» \Web-based Distributed Delegation (va)(Flreceived] || a(V'- V) ewsb(Q)) —sc (va)(F[(V',a)] | a(V)~~b(Q)) Process receives value I/'from buffer a.
= Theory and practice of session exception handling

Receiving a Message: Exception Raised Unsuccessful handled receive:

Process tries to receive from empty
— (va)(M || a(e)evb(s)) —rc (Va)(FIN'] | dall fer |-l fen |l ale)erb(s)) -
) where M = F[tryE[relceivea] asxin N otherwise N'] buffer where peer endpomt is cancelled.

fus(E[receivea]) = {ciViet .U {a} Cancel free variables in context;
evaluate otherwise term.

Channel Cancellation Channel Cancellation:

Distributed Delegation (va)(talla(V)e~b(Q)) —c (va)(sal| i -1l e |l a) ob(Q)) Cancel all names contained within a
where fvs(V) = {c;}tic1.n buffer.

S1
< ;) f ;) A S
S t, Q Preseruation (Configuration Reduction) Deadlock-Freedom and Progress
S t q

Reduction preserves typeability of configurations C. | Calculus inherits deadlock-freedom from logical

Compatibility relation = on typing contexts. roots of GV.
S2 tl tl

Theorem: Assume I only contains channel names. Theorem: Suppose ;A — Cand C » .
f ;A + Cand C —_ C', then there exist "', A" such If the main thread has been cancelled, then

Delegation: sending channels over channels. thatl, A<, Aland ', A"+~ C. C = halt. Otherwise, if the value returned by C
contains no channels, thenC = V.

In distributed setting, issue: "lost messages”.
» A wants to send 5 along s, Bwants to send s, along t..

No happens-before relation! 5 may be sent to B, not C.

= Inspect sent messages, send delegated buffers F
. | re Work
= Update endpoint locations on server uture Vo
= Retrieve lost messages, forward to recipient Current status: full communication between different concurrency runtimes,

« Final buffer at recipient: initial buffer + lost messages + formalism and metatheory for exceptions.

messages received after lost messages. Exception Implementation: Implement exception handling mechanism in Links: CEK

Must ensure carrier channels aren't delegated! extension for interpreter; CPS extension for client.

Multiple Servers: Inspired by Hop.js services [4], allow multiple Links servers.

References:

[1] Benton, N. and Kennedy, A., 2001. Exceptional syntax. Journal of Functional Programming, 11(4), pp.395-410.

[2] Lindley, S. and Morris, J.G., 2017. Lightweight Functional Session Types. Behavioural Types: from Theory to Tools, p.265.

[3] Mostrous, D. and Vasconcelos, V.T., 2014. Affine sessions. In International Conference on Coordination Languages and Models (pp. 115-130). Springer, Berlin, Heidelberg.
[4] Serrano, M. and Prunet, V., 2016. A glimpse of Hopjs. In International Conference on Functional Programming (ICFP) (p. 12).

