
First-Class Distributed Session Types
Simon Fowler
simon.fowler@ed.ac.uk
Joint work with Sam Lindley and J. Garrett Morris

“But what happens if a user just closes the browser?”:
Affine Sessions with Exceptional Syntax

Affine sessions: a user can close their browser!
Exception construct with explicit success continuation [1].
On communication error:
•	Inspect free variables, cancel affected channels
•	Proceed to “otherwise” block if exception handled
•	Halt thread otherwise

Adapts Affine Sessions [3] to asynchronous concurrent
λ-calculus GV.

Formalism

sig recvAndAdd :
 (?Int.end, ?Int.end) ~> Int
fun recvAndAdd(s, t){
 try {
 let (x, s) = receive s in
 let (y, t) = receive t in
 (x, y)
 } as (x, y) in {
 x + y
 } otherwise {
 (-1)
 }
}

Preservation (Configuration Reduction) Deadlock-Freedom and Progress

Session Types: Types for Protocols

Data types classify data.
Session types describe protocols as types.

Choose either EHLO or QUIT
Send Domain, then FromAddress,
then ToAddress, then Message

SMTPClient = ⊕{
 EHLO: !Domain.!FromAddress.!ToAddress.
 !Message.SMTPClient;
 QUIT: end
}

Finish the protocol

Start again

Current status: full communication between different concurrency runtimes,
formalism and metatheory for exceptions.
Exception Implementation: Implement exception handling mechanism in Links: CEK
extension for interpreter; CPS extension for client.
Multiple Servers: Inspired by Hop.js services [4], allow multiple Links servers.

Future Work

Links: Web Programming without Tiers
Links: a functional web language unifying client, server
and database code.

request

response

query

result

Browser:
HTML / Javascript /

XML

Server:
Ruby / Python /

Java / ASP

Database:
SQL / XQuery

Links extended with session types [2], making use of a linear
type system.

This work: Distributed Session Links.

•	Session abstractions in the web setting
•	Web-based Distributed Delegation
•	Theory and practice of session exception handling

In distributed setting, issue: "lost messages".
•	A wants to send 5 along s1 , B wants to send s2 along t1.

No happens-before relation! 5 may be sent to B, not C.

•	Inspect sent messages, send delegated buffers
•	Update endpoint locations on server
•	Retrieve lost messages, forward to recipient
•	Final buffer at recipient: initial buffer + lost messages +

messages received after lost messages.

Must ensure carrier channels aren't delegated!

A

B

C

s t
s1

s2 t1

t2
A

B

Cs

t

s1 s2

t1

t2

Delegation: sending channels over channels.

Distributed Delegation

Breaking the Barrier: From Multithreaded to Distributed

Concurrency on server and clients. Limitation: no
communication across boundaries!
Distributed Session Links: breaks barriers.
Websockets allow full-duplex communication
between clients and server.

•	Automatic message serialisation and deserialisation
•	Distribution-aware concurrency runtimes
•	Distributed algorithm for channel mobility

Server

Client 1 Client 2 Client 3

Server

Client 1 Client 2 Client 3

Reduction preserves typeability of configurations C.
Compatibility relation ≍ on typing contexts.
Theorem: Assume Γ only contains channel names.
If Γ;Δ ⊢ C and C →C C', then there exist Γ', Δ' such
that Γ, Δ ≍ Γ', Δ' and Γ', Δ' ⊢ C'.

Calculus inherits deadlock-freedom from logical
roots of GV.
Theorem: Suppose Γ;Δ ⊢ C and C →C .
If the main thread has been cancelled, then
C ≡ halt. Otherwise, if the value returned by C
contains no channels, then C ≡ V.

References:
[1] Benton, N. and Kennedy, A., 2001. Exceptional syntax. Journal of Functional Programming, 11(4), pp.395-410.
[2] Lindley, S. and Morris, J.G., 2017. Lightweight Functional Session Types. Behavioural Types: from Theory to Tools, p.265.
[3] Mostrous, D. and Vasconcelos, V.T., 2014. Affine sessions. In International Conference on Coordination Languages and Models (pp. 115-130). Springer, Berlin, Heidelberg.
[4] Serrano, M. and Prunet, V., 2016. A glimpse of Hopjs. In International Conference on Functional Programming (ICFP) (p. 12).

Channel Cancellation Channel Cancellation:
Cancel all names contained within a
buffer.

(νa)(�a ‖ a(
−→
V)�b(Q)) −→C (νa)(�a ‖ �c1 ‖ . . . ‖ �cn ‖ a(�)�b(Q))

where fvs(
−→
V) = {ci}i∈1..n

1

Receiving a Message: Exception Raised Unsuccessful handled receive:
Process tries to receive from empty
buffer where peer endpoint is cancelled.
Cancel free variables in context;
evaluate otherwise term.

(νa)(M ‖ a(ε)�b(�)) −→C (νa)(F [N′] ‖ �a ‖ �c1 ‖ . . . ‖ �cn ‖ a(ε)�b(�))
where M = F [tryE[receivea]as x inN otherwiseN′]

fvs(E[receivea]) = {ci}i∈1..n ∪{a}
1

Example Reduction Rules
Successful receive:
Process receives value V' from buffer a.

Receiving a Message
(νa)(F [receivea] ‖ a(V ′ ·−→V)�b(Q))−→C (νa)(F [(V ′,a)] ‖ a(

−→
V)�b(Q))

1

Poster.indd 1 01/09/2017 11:22:09

